Online Safety Assurance for Learning-Augmented Systems Noga H. Rotman^{*}, Michael Schapira^{*}, Aviv Tamar^{*}

HotNets 2020

Deep Learning in Networking

- Deep learning (DL) is everywhere these days even in computer networks! • • Video streaming, traffic management, caching...
- These ML-based algorithms do very well when the training environment is faithful to the operational environment
- However, real-world networks may differ greatly from training environments, leading to a drop in performance
 - Even when training in situ
- How can we reap the benefits of ML without paying the costs for bad • generalization?

Presenting OSAP

- We propose a general methodology for the safe deployment of DLbased systems
 - Building into the system the means to detect, in real-time, when the system encounters scenarios it was not trained for
- We term this challenge the Online Safety Assurance Problem (OSAP)
- Online safety assurance can help by facilitating switching to a reasonable, default non-DL policy when the system can't be trusted to make reliable decisions

Safety Assurance as a General Strategy

- Safety assurance is fundamental to computer and networked systems in general
 - A default non-DL policy typically exists the current solution • Systems needs to operate in environments too diverse to be
 - represented by their training data
- To the best of our knowledge, we are the first to tackle this issue

Sequential Decision Making (MDP)

OSAP: Definitions

Goal: Optimizing the discounted expected return $\mathbb{E}^{\pi} \left| \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right|$

Environment

Many algorithms employ a value function to estimate the expected discounted return at state st

OSAP From an ML Viewpoint

OSAP deals with a **largely unexplored** scenario in ML literature:

What happens when a policy learned for one MDP is applied to another MDP?

Why is this the case?

- Training in a simulator / emu dynamics
- Changing network conditions, e.g. different cell towers
- New factors: routing changes, network failures...

OSAP: Definitions

• Training in a simulator / emulator, which fails to capture real-world

s, e.g. different cell towers , network failures...

What To Measure?

Uncertainty in agent's input: Identifying when the input differs from the training data, .i.e. the agent wasn't trained on these conditions

Uncertainty in agent's output: Even if the input changes, perhaps the agent learned something that is still relevant

OSAP: Definitions

- Us w.r.t. the environment's states
- This is a standard *unsupervised* ML task termed novelty detection (ND)

- U_{π} w.r.t. the **policy**
- U_v w.r.t. the value function
- There is **no standard way** to evaluate uncertainty w.r.t. the output
- We compare the outputs of ensembles
 - several policies / value functions

U_S as novelty detection

• OC-SVM learns a function that outputs +1 in a small region capturing most of the data points, and -1 elsewhere

U_{π} as agent ensembles

- If each agent is certain of its policy, the output of several agents should be similar • Similarity: single value calculated using the Kullback-Leibler divergence

Uv as value-function ensembles

- If there are multiple but different good policies, different agents actions might differ, but the values would be similar
- Similarity: the sum of distances between these values and the average value

OSAP: Definitions

HOW TO Measure?

Note: U_{π} and U_{v} output a continuous value - so we need to set a bar above which a sample is deemed dissimilar

When To Default?

- To avoid switching to the default policy prematurely:
 - We consider a *sequence* of *k* datapoints
 - Defaulting only if **uncertainty** is **detected / consecutive times**
- Setting the thresholds involves configuring k, l, and also, for U_{π} and U_{ν} , the bar above which the action/value are considered uncertain
- There is a **tension** between **optimizing performance** when the training and test • environments are similar, and **controlling** the **possible damage** otherwise

Therefore, the choice of **threshold** is **flexible**, and should **reflect** the system's desired balance between performance and risk

OSAP: Definitions

Case Study: Adaptive Video Streaming (ABR)

Video Client

Request:

- Each video split into chunks
- Each stored in different discrete bitrates
 - e.g. 240P, 480P, 720P (HD)...

Evaluation

- The ABR algorithm needs to choose the next bitrate r
 - **Undershoot bad resolution**
 - **Overshoot** suffer rebuffering

Evaluation Framework

- We used Pensieve, a DL-based ABR algorithm as our learned policy
 We implemented the three proposed safety assurance schemes as
- We implemented the three provide th
- As the default policy we chose a simple-yet-effective ABR strategy called Buffer-Based (BB)
- We evaluated using both synthetic and real-world datasets

Performance With Safety Assurance in-Distribution

- Pensieve outperforms BB indistribution, meaning, when the training and test datasets come from the same distribution
- Our safety assurance schemes
 perform better than BB
- But not as good as Pensieve

Evaluation

 a necessary cost needed to accomplish safety

U_π and U_v are calibrated to match the performance of U_s, to allow for a fair comparison

Pensieve Is Dominated by BB When OOD

Agent trained on Gamma(2,2)

Pensive does not generalize well, so when tested on **distributions different** from the training distribution (OOD), it may performs poorly, sometimes worse than random!

Evaluation

Contrasting the Three Schemes When OOD

- mean, and median values
- ND is a safer choice

Evaluation

- Defaulting if the agent was not trained on the input
- V-ensemble can potentially provide higher performance
 - Utilizing on the knowledge gained during the training even when **OOD**

Average Normalized Value

All three safety assurance schemes are better than Pensieve in terms of min,

Remember, the threshold is flexible, so can be chosen to obtain safer/riskier results

A-Ensembles Vs. V-Ensembles

- Interestingly, A-ensemble is essentially dominated by the other two safety assurance schemes
 - Note the significantly lower min value and worse than Random (!) mean value
- Average Normalized Value We conjecture that this is because each agent might learn a different (good) policy, causing the **high variability** between agent outputs even on the training data

Evaluation

Conclusion and Future Research

- system are no longer reliable, and defaulting to a safer alternative good performance when in-distribution, while also being safe OOD
- We proposed detecting, in real time, when the decisions reached by a Initial results show that incorporating online safety assurance maintains

What's next?

- Extending results to other DL-based ABR systems and default policies Investigating OSAP when training is performed in situ
- Exploring online safety assurance in other application domain

Thank You! Questions?

Full text: https://doi.org/10.1145/3422604.3425940